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Abstract—The underwater image processing and enhancement
field have been garnering significant attention because of the
emphasis put on aquatic and marine life by the researchers.
Aquatic robotics also play a key role in the exploration and
exploitation of underwater life along with ecological research.
New potential sources for food, renewable energy generation, and
developing medicinal drugs can be unlocked. This is achievable if
exceptional algorithms and models are developed for enhancing
the underwater imaging environment. The goal of this task is
for the model to assert its focus on the color chart added to
the images taken in the underwater environment by introducing
corresponding masked images. Masks, which indicate the position
of the color chart, and the underwater images are both applied
together to train the network. color chart serve as reference
standards to estimate quality degradation under varying lighting
conditions. The loss function has been modified so that the
algorithm acts accordingly. This served as a more robust and
agile way possible to enhance the images.

Index Terms—Image Enhancement, Underwater Imaging,
Transfer Learning, Masked Image Modelling, Convolutional
Neural Networks.

I. INTRODUCTION

Capturing images in an underwater environment has been
one of the most daunting tasks in the computer vision field
as it poses quite unique challenges. Undistorted images are
hard to acquire the deeper we go. Constraints such as light
penetration and the underwater environment hinder the image
quality captured. Deteriorated images impact hugely on feature
extraction as well as object recognition. Images underwater
gets degraded due to color cast, mainly blue and green
color cast because blue color and green color possess longer
wavelengths compared to others and can travel deeper resulting
in selective attenuation with greenish and bluish hues [1],
due to wavelength-dependent attenuation and scattering, due
to haze because of suspended particles, and the marine snow
also affecting in the form of noise. The ambient light and
the vertical depth from which the images have been taken,
resulting in varying water colors observed at various depths.
The intensity is reduced along each scene in the image to
camera distance (range) because the objects are illuminated
by the attenuation of the ambient lights and also because
the reflected lights are scattered and absorbed [2]. Thus
the more the objects are farther from the camera the more
they are blurred and lack contrast. Enhancing these distorted

and degraded images into better quality will be crucial in
many applications of underwater images and videos in aquatic
life. It will also be beneficial and of great significance in
speeding up the research and exploration in marine biology
and archaeology [3] and marine ecology [4] and numerous
other domains. Utilization of deep-sea resources can lead to
technological advancements and can also serve as new source
of food [5], [6], [7].

In order to build models for the tasks required, one needs
a huge amount of high-quality data to learn. Getting those
high-quality underwater images is an arduous task and is
extremely hard to acquire. Obtaining those ground-truth im-
ages is difficult due to the constraints mentioned before.
Despite the advancements in image enhancement algorithms
in underwater environment, they remain inadequate because
of the unavailability of the real-world dataset of underwater
images that correctly mimics the underwater environment.
These underwater images need to accurately encapsulate most
essential information so that they can be effectively incorpo-
rated into myriad applications. This issue results in the image
enhancement algorithms in deep learning not performing up
to the standard matched by the recent deep learning based
low-level and high-level vision problems [8], [9], [10], [11],
[12]. To overcome the said barrier and boost advancement
in the progress in image enhancement in respect to under-
water field, various datasets have been proposed. Underwater
Image Enhancement Benchmark (UIEB) [13] is one of those
datasets and it encompasses the underwater environment most
accurately to my knowledge. This UIEB dataset has been
used in this project. UIEB has contributed by providing
a platform with well-designed pairwise comparison gener-
ally needed in image enhancement algorithms, as well as
allowing the comprehensive study of state-of-the-art single
underwater image enhancement algorithms (quantitative and
qualitative evaluation) thus helping by offering insights into
the strengths and shortcomings of current algorithms while
also suggesting new possible directions for research areas.
As already mentioned, because of the punishing underwater
environment, there is severe lighting conditions. Using color
chart allows even in different illuminations, how the actual
color is getting degraded and serves as a better reference
to make any adjustments needed. Masked image modeling is

mailto:a.chourey@se21.qmul.ac.uk
mailto:chauyi.li@qmul.ac.uk


implemented to alter the loss function in this project. Masking
is done here so that only some portions are revealed and other
remaining portion is concealed and completely untouched.
Masking basically ensures selective adjustment is possible.
This allows us to estimate the quality of image degradation
occurring by referring to certain patches equivalent to those of
color chart. Masking makes image manipulation more dynamic
and also adds productivity to the algorithm.

II. RELATED WORK

Research will only be valuable and plausible in the domains
of aquatic and marine life by attaining good quality images.
There are numerous methods present functioning on enhancing
the underwater images. Existing methods for enhancing under-
water images can be classified into two categories: traditional
methods and deep-learning-based methods.

A. Traditional Methods

To improve the visual quality, the traditional approach
has been to find ways to tune the pixel values. Contrast
enhancement method [14] focuses on optimizing the contrast
of underwater images, as our vision is more sensitive to-
wards contrast as compared to luminance. Another algorithm
enhances contrast using maximum likelihood estimation of
scale parameter followed by correcting the loss of energy in
signal due to contrast enhancement [15]. Dynamic pixel range
stretching [16] tries to equalize contrast and lighting concerns
by implementing two algorithms on RGB and HSI color mod-
els. Pixel distribution adjustment [17] model improves over
histogram equalization approach by averaging RGB and HSV
color spaces while extending on Rayleigh histogram approach.
Image fusion model [18] improved on fusion-based strategy
for underwater image enhancement by blending the images
obtained from a white balanced single input image. Another
framework presented is using particle a swarm optimization
algorithm for enhancing underwater images [19]. Adjustments
were made in the RGB by the algorithm which showed
refinement in the illumination and true colors of images. A
color correction technique [20] published is implemented in
such a way that a threshold conditional to the histogram is used
to adjust low light distributed regions. Another color correction
technique [21] enhances diminishing colors in underwater
images by evaluating manual and automatic color correction
techniques. It does so with the use of stretched histograms by
acquiring their mean values. Ultimately it was ascertained that
due to the significance level, the manual correction technique
surpasses the automatic enhancing approach. These models
mentioned before are the physical model-free based algo-
rithms that omit prior knowledge of environmental conditions
needed and therefore producing either under-enhanced results
or over-enhanced results, or they introduce artificial colors.
For instance, the image fusion model [18] does not produce
results when dealing with diverse and challenging underwater
scenarios.

Physical model-based methods are more extensively used
as they incorporate underwater imaging mechanisms by ex-

tracting features/parameters according to prior information.
Prior methods such as Red Channel Prior [22] and Dual
Dark Channel Prior [13] aids in the rectification of problems
concerning non-uniform illumination and artificial lighting
by assisting in detecting the artificially illuminated regions.
Blurriness Prior [23] adopts the image formation model (IFM)
and integrates it with image blurriness, making it possible to
evaluate the distance between the camera and scene points
and thus ultimately enabling to recover and further enhance
those underwater images. General Dark channel prior [24]
proposed by Peng deals with generalizing dark channel prior
in order to handle images taken in extreme weather condi-
tions. There are certain issues with using methods extending
physical-based models. Firstly, they are either time-consuming
or are sensitive toward particular image types [25]. Secondly,
obtaining the parameters for the medium transmission depends
discontinuously upon the initial data. Moreover, the algorithms
based on current physical models [26], [27], [22], [28], [24]
faces challenges, as getting valuation of complex underwater
imaging parameters is not definite i.e. underwater imaging
models necessarily struggle to have authority and influence.

B. Deep Learning Models

There has been explosive growth and development in the
fields of artificial intelligence and machine learning in recent
decades many of which have been fuelled by the research
breakthrough in Deep Learning. The fierce study and applica-
tion of Convolutional Neural Networks from 2011-2016 of last
decade for the challenge on massive image datasets such as
ImageNet [30] in annually held competition ILSVRC, ignited
the boom in the rapid development of the computer vision
tasks and innovations in the architecture of the CNN models.

Deep learning allows to identify and extract features from
images without relying on the need to break down the images
into individual pixels. In recent years, the researchers have
managed to achieve extreme preciseness in solving image
recognition and classification tasks with deep neural networks
(convolutional neural networks), and especially there is sub-
stantial boost in low-level visual tasks [31], [32], [33], [12],
[34]. Due to breakthroughs and significant performance im-
provements, deep learning is also being tried upon improving
the tasks of performing underwater image enhancement. Novel
ideas have been proposed in the underwater imaging field. A
GAN (Generative Adversarial Network) has been implemented
with an image formation model to produce clean images for
the task of supervised learning [35]. A deep residual network is
implemented to deal with the underwater image enhancement
task in one of the paper [36]. In this paper, convolutional neu-
ral network models are fed input training data by generating
synthetic underwater images using Cycle consistent adversarial
network (CycleGAN). Then a reconstruction model i.e. very-
deep super-resolution reconstruction model (VDSR) is imple-
mented which acts as an enhancement model. Thus a residual
network model was proposed for enhancing the underwater
image. A new multiscale dense generative adversarial network
(GAN) was proposed for underwater image enancement [37].



Fig. 1: Outline of the implemented model Ucolor can be seen here. The architecture consists of an encoder and a decoder
network. Max-pooling is used to implement downsampling, and bilinear interpolationis used to implement upsampling. kernel
size is set to 3x3 with stride fixed to 1 for each convolutional layer. The fig used here is taken from the Ucolor paper [29]
and can be found in Sec. III of that paper [29].

Here, for generator, a dense-block performing residual multi-
scale is used because of which there is a boost in performance,
as it renders more details and also exploits preceding features.
As for the discriminator, to stabilize it’s training, a compu-
tationally light spectral normalization is used. A conditional
generative adversarial network (cGAN) [38], where a dual
discriminator has been developed whose task is to determine
the authenticity of the generated results from multiple views
has also been proposed.

III. PROPOSED METHOD

In this section, we discuss the architecture used in the
project, along with the training dataset used here to implement
the model. Also, in the end, the loss function is described
as used in the project to evaluate the outcome presented by
the model. This project is based on a pre-built model called
Underwater image enhancement via medium transmission-
guided multi-color space embedding (Ucolor) created by Li
and Anwar [29].

A. Architecture

The unique characteristics implemented in their method’s
architecture distinctive to the already functioning deep learning
models are: a) As attention mechanism has been combined
with multi-color space encoder network, this allowed distinc-
tive features representation due to multi-color space, while the
representative information is also determined in an adaptive
manner; b) Attention mechanism has been tailored by incor-
porating the existing expertise of underwater image behavior

into the neural network so that medium transmission guided
decoder network can emphasize on quality-degraded areas; c)
No pre-processing step is needed before the model training and
since it imitates supervised learning, more stable results are
generated; d) Supports end-to-end learning, thus the method
operates the underwater scenes in a unified structure; e) The
model is able to attain outstanding results and marvellous
performance on various datasets.

The Ucolor model’s architecture is shown in Fig. 1. The
following are the key components of the model’s architecture.

1) Multi-Color Space Encoder: Each image is represented
in the form of three different color spaces i.e. features are
extracted by the algorithm in three color spaces (HSV, RGB,
Lab). Every degradation-related component (color, saturation,
hue, luminance, and intensity) gets incorporated into a unified
structure when using all these color spaces. There might be
contrasting color difference values between two points in one
color space compared to the other color space. Therefore, the
measurement of color deviations of underwater images is fa-
cilitated by multiple color spaces embedding. Also, more non-
linear operations are brought by a multi-color space encoder
while color space transformation occurs. These non-linear
transformations ultimately improve deep models performance
[39].

2) Residual-Enhancement Module: In order to retain data
fidelity and tackle vanishing gradient problem, residual en-
hancement module is used, with convolutional layers in each
module having exact number of filters. In the encoder network,



number of filters are raised progressively with a factor of 2
from 128 to 512 , whereas, in the decoder network, number
of filters are reduced from with the same factor from 512
to 128. Kernel size was set to 3x3 with a stride of 1 for
every convolutional layer. Fig. 2 shows the construction of
each residual enhancement module.

Fig. 2: Every residual-enhancement module used here in the
model consists of two residual blocks, and three stacks of
convolutional layers followed by activation function (Leaky
ReLU) are constructed in each of these residual blocks, with
only last convolutional layer not having one activation function
after it. For identity connection, after every residual block there
is pixel-wise addition.

3) Channel Attention Module: Features extracted from each
of the three color spaces have disparate contributions and
thus interdependencies are exploited by the channel attention
module explicitly between the channel features from these
three color spaces used. Identical mapping fashion is used to
handle the channel attention weights because of which it is
able to retain the fine properties of original features and avert
the vanishing gradient problem. Mathematical notations used
by them can be seen in Sec. III-C [29].

4) Medium Transmission Guidance Module: With the
medium transmission guidance module, the decoder network
incorporates the medium transmission map. To be more pre-
cise, a pixel-wise attention map is used by reversing the
medium transmission map i.e. reverse medium transmission
(RMT). These RMT maps are utilized as feature selectors
to highlight the significance of various spatial positions of
these features. One thing to note here is that there is no
availability of the ground truth medium transmission maps of
the corresponding input underwater images in reality. To tackle
this issue and collect corresponding ground truth medium
transmission maps, they utilized a prior-based estimation al-
gorithm. More details about the mathematical notations used

for this module can be obtained in Sec. III-D [29].

B. Training Images

To obtain the input training images and their corresponding
ground truth reference images, Seas-thru [40] dataset is re-
ferred. The model proposed in the Sea-thru successfully attains
to remove the water from the underwater images making it
possible for datasets to be analyzed with higher efficiency.
Reference images are generated using this.

Fig. 3: The figure shows the image taken underwater along
with its corresponding result showing as if every object present
is not in an underwater environment. The images showed here
are also presented in the original paper [40].

The method implemented by them, when feeded an RGBD
image, in a similar fashion Dark Channel Prior (DCP) works
with haze [41], model firstly calculates backscatter with only
difference being employing the known range map. Then,
to calculate the range-dependent attenuation coefficient, the
optimization framework uses an illumination map. This illu-
mination map is procured by adopting local space average
color [42] as inputs. Unknowns in the optimization step can
be substantially scaled down and can be modeled as 2 term
exponential because of the distance dependent attenuation
coefficient. They are the first to employ revised image forma-
tion model which surpasses every method using the previous
models, by doing quantitative and qualitative evaluation. More
information regarding the working of the model’s method can
be found in the Sec. IV [40].

The image shown in fig. 4 is one example of the set of 40
training and reference images used for the training purpose.
The images trained are of size 620x420. The masked images
used in the project are grayscale images. In each image, the
pixel intensity is maximum at those pixel positions where there
are color charts present. One such example of the masked
images used is shown in the Fig. 5.



(a) Training Image (b) Reference Image

Fig. 4: This figure shows one of the input image used for
training and it’s corresponding reference image. This reference
image is generated by using [40].

C. Loss Function

The aim is to enhance the underwater image by removing
the color casts. Continuing the previous work performed [29],
changes have been made to the loss function in such a way
that it focuses mainly towards the color chart introduced into
the images. To ensure this, corresponding masked images are
introduced.

Fig. 5: The figure shows one of the masked image correspond-
ing to the training and reference image shown in Fig. 4. Every
masked image used is of grayscale in nature.

To perform the masking procedure, binary mask are added.
These binary masks are nothing but an array of binary values
of grayscale images holding values. The values that masked
image contains are either 0 or 1. Value 1 here corresponds
that at that pixel position there is a presence of color chart.
Masked images are loaded first in a similar fashion as other
images are loaded. Every set of images are then converted
into an array of float values. For the training procedure, image
patches are selected after randomly cropping them into a shape
of 128x128. Patches selected here from the input images, depth
images and the masked images are always picked from same x
and y position. Once this is done, the image patches are finally
sent to the loss function for evaluation. The loss function
consists of combination of MSE loss (LMSE) and VGG loss
(Lvgg). MSE loss here is mean squared error while VGG loss
corresponds to the network’s loss.

Let’s suppose, I(x,y) is an ground truth image, and N(x,y)

is representing the enhanced result of the feeded input image
generated by the network. M(x,y) represents the correspond-
ing masked image. Firstly, pixel-wise difference is taken in
between the underwater input image and the enhanced result.
Let the difference be denoted by D(x,y).

D(x, y) = I(x, y)−N(x, y) (1)

Once the difference is calculated i.e. D(x,y), element-wise
multiplication is executed between D(x,y) and M(x,y). This
multiplication with masked image enforces that only the
desired region gets calculated for the loss. The loss function
is only able to focus on that window, and forces training
accordingly. The resulting value is the error in pixel values
corresponding to only the color chart patch that we are trying
to get. It is denoted by me (masked error).

me = D(x, y) ∗M(x, y) (2)

After this, the square of the masked error i.e. me is calcu-
lated. Element-wise square is computed here. It is denoted by
sme (squared masked error).

sme = (me)2 (3)

Then the mean is taken for the pixels having non-zero values.
This is denoted by nzv (non zero values) and calculated by
taking the result with the help from (2) i.e. me.

One thing to note here is that there could be instances where
the image patches getting selected from the masked images
only contains the pixels corresponding to value 0. While taking
the mean of the sme, only those pixel values are considered
that are non-zero. If this constraint is considered, and if the
image patch getting cropped from masked image only contains
zero values, then it could lead to unwanted results in the form
of error getting divided by the 0 as there are no non-zero
values present at the moment. This could ultimately results in
us getting undefined value. This is an undesirable result for
the loss. To tackle this issue, maximum between the non-zero
values and the constant value 1 is taken. This is denoted by
m (non zero values).

m = max(1, nzv) (4)

Finally, the mean is taken by combining (3) and (4). Squared
masked error sme is divided by m obtained in (4). This results
in getting Mean Squared Error denoted by LMSE .

LMSE = sme/m (5)

VGG loss (LV GG) is the network’s loss on pre-trained
VGG-19 network on ImageNet dataset [30]. From this pre-
trained network, the relu5 4 layer is used to compute the
vgg loss by calculating the distance between the feature
representation of the ground truth image and the corresponding
reconstructed result. This is done for every convolutional layer
present in the network. Let ϕj(.) be the vgg networks loss for
the for the jth convolutional layer [39].

H∑
x=1

W∑
y=1

|ϕj(N)(x, y)− ϕj(I)(x, y)| (6)



As mentioned before, total loss is a linear combination of
MSE loss (LMSE) and VGG loss (LV GG) calculated. This
is done so as to maintain reliable and steady equilibrium in
between quantitative scores and visual quality. Total loss is
denoted by (Ltotal) and is expressed as:

Ltotal = LMSE + λLV GG (7)

Here, as both the losses are obtained in different scales, in
order to stabilize the range of these varying losses, from
observational analysis, λ is set to 0.05.

(a) Original Image (b) Depth Image

(c) Ucolor-MSE (d) Ucolor-VGG (e) Ucolor

(f) Ucolor-smallMSE (g) Ucolor-smallVGG (h) Ucolor-small

(i) UMaskNet-MSE (j) UMaskNet-VGG (k) UMaskNet

Fig. 6: This figure shows the visual comparison done on input
image having minute blurriness and blue color deviation. The
input image contains several objects in it and of different sizes.
Results produced by each model is shown here. UMaskNet-
MSE enhances almost every object without deviating from the
original color.

IV. EXPERIMENT

This section comprises of implementation details, experi-
ment setting is then explained and finally in the end visual
comparison is shown.

A. Implementation Details

To train the network, 40 images are taken. Each image used
has different illumination setting and the position of the color
chart used is also varying from image to image. This ensures

various characteristics regarding the quality degradation oc-
curring gets recorded. The model is trained with a batch size
of 10 while the learning rate is set to 1e−6 i.e. 0.000001.
The training for the model is done for 100 epochs with the
learning rate is fixed with same value as it was initialized
with throughout the whole process. Gaussian distribution is
used for initializing the filter weights for every layer. Initially,
the bias has been set to a constant value. As for the network’s
optimization, ADAM optimizer is used.

B. Experiment Setting

To evaluate the model, 90 sets of images are taken from
the UIEB dataset [13] for the testing purpose. Various sets of
combinations have been used to evaluate the testing images.
Various combinations have been used to test out our model
UMaskNet and is compared with the original Ucolor model.
UMaskNet contains the modified loss function which adapts
to the masked images added as mentioned in Sec. III-C. Two
variants of UMaskNet have been used: one where only MSE
loss (LMSE) is being calculated i.e. UMaskNet-MSE and an-
other one where only VGG loss (LV GG) is being used towards
contributing to total loss i.e. UMaskNet-VGG. Then, with the
learning rate being 1e−6 as used for UMaskNet instead of 1e−4

(used for the original Ucolor model), the Ucolor model has
been used (let it be denoted by Ucolor-small). It does not take
into account the masked images whatsoever. However, here
also two variants of Ucolor-small are used. One calculating
only MSE loss (Ucolor-smallMSE) and other time to compute
VGG loss only (Ucolor-smallVGG). Finally, with keeping the
learning rate 1e−4 as done in the original Ucolor model has
been used. Similarly, original Ucolor has also been tweaked
twice, once to calculate VGG loss only (denoted by Ucolor-
VGG) and the other time to calculate MSE loss only (denoted
by Ucolor-MSE)

The model has been trained using NVIDIA Tesla P100-
PCIE with the CUDA version 11.2. Training each set of model
took 3 hours.

C. Visual Comparison

This section comprises of visual results obtained after
executing the different experiment setting mentioned before.

Fig. 6 shows the results on a forward looking image. The
model UMaskNet seems to be adding unwanted noise. This
could be because of VGG loss. Since the VGG loss function
uses L2 distance in between the activations used in the hidden
layers by training on particular image datasets (here ImageNet
dataset [30]). One drawback for using it could be that this
perceptual loss needs hyper-parameter tuning and requires
regularization for unrelated tasks. Therefore, as can be seen
from variants where only VGG loss is calculated, the results
are worsening. However, with UMaskNet-MSE the results are
quite pleasing and seems to be effectively eliminating haze
and adds more sharpness to the objects making them more
identifiable.

Fig. 7 shows results on a downward looking image which
has distinct green color cast present in it. As we can see due



(a) Original Image (b) Depth Image

(c) Ucolor-MSE (d) Ucolor-VGG (e) Ucolor

(f) Ucolor-smallMSE (g) Ucolor-smallVGG (h) Ucolor-small

(i) UMaskNet-MSE (j) UMaskNet-VGG (k) UMaskNet

Fig. 7: This figure shows the visual comparison done on input
image having high green color deviation. There is also low
color contrast in the input image. Results produced by each
model is shown here.

to the green color cast, structural details in the underwater
image are not quite comprehensible and makes it demanding
to visualize. Color artifacts adds up in the case of Ucolor-
VGG, while in Ucolor-MSE and Ucolor there is still some
green color cast left. In terms of visual quality, other models
either under-enhances or adds over-saturation to the image,
whereas, UMaskNet-MSE again gives best result by managing
to sharpening the contrast and not adding obvious over-
saturation.

Fig. 8 shows the results on image with high-backscatter.
Backscatter occurs because in between the object and the
camera i.e. distance in between the scene to be viewed and the
camera, the particles present gets illuminated. This results in
more fogginess in the image and the contrast also shrinking.
Our model on the images having low backscatter as can be
seen in Fig. 6 and Fig. 7 is able to solve the issue extremely
effectively. However, on the images having high-backscatter,
every model seems to be struggling to solve the issue. As can
be seen from the images shown in Fig. 8, the results are not
quite desirable. Almost every model seems to be adding some
color cast into the result. The results are also quite blurred.
UMaskNet-MSE seems to be producing decent result out of all

(a) Original Image (b) Depth Image

(c) Ucolor-MSE (d) Ucolor-VGG (e) Ucolor

(f) Ucolor-smallMSE (g) Ucolor-smallVGG (h) Ucolor-small

(i) UMaskNet-MSE (j) UMaskNet-VGG (k) UMaskNet

Fig. 8: This figure shows the visual comparison done on input
image which has high-backscatter scene. Results produced by
each model is shown here. Mixed results are produced by each
model where almost every resulting output seems to be under-
enhanced.

other models as the color correction seems to be original and a
bit realistic but even here the result seems under-enhanced and
it is not a desirable result. UMaskNet-MSE is slightly better
at solving backscatter issue. Some modifications are needed
to tackle this issue more efficiently and robustly.

Fig. 9 shows the progress made by the UMaskNet-MSE
model after every 10 consecutive epochs. Since the model
is trained for 100 epochs, there are 10 images shown in the
figure. Though there does not seem much difference in the
changes occurring at each epoch shown, as images presented
here are quite smaller and it is not plausible to show them in
their original size. However, there is evident changes present.
The contrast is slightly rising in each epoch result. The images
in the front are getting more highlighted. The reason for that
is because the color charts used in the images are closer to the
camera and that’s why the network is forcing the foreground
objects in getting more enhanced.

V. CONCLUSION

The main focus of this paper was to implement loss function
that adjusts according to the color charts introduced in the
underwater images so that it is able to estimate quality



(a) 10th epoch (b) 20th epoch (c) 30th epoch (d) 40th epoch (e) 50th epoch

(f) 60th epoch (g) 70th epoch (h) 80th epoch (i) 90th epoch (j) 100th epoch

Fig. 9: This figure shows the output enhanced results by the UMaskNet-MSE model recorded at different consecutive stages
of epochs. The images show the progress made by the model at different iterations.

degradation more efficiently. As can be seen from the results
obtained, the proposed model is enhancing the images as
intended to a better extent. The results are quite pleasing to
the eye and no color is getting attenuated. Superior results are
being generated. In certain scenarios, such as images having
limited lighting i.e. low illumination, the output results are
decent and almost all models generates results with improved
visibility, even though images do not get enhanced to much
extent, our model is not adding color casts to the output image.
For the future work, the color charts can be more evenly
distributed amongst the underwater image to tackle the issues
of high back-scatter and low illumination.
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